Enrollment No: _____ Exam Seat No: ____

C. U. SHAH UNIVERSITY

Winter Examination-2020

Subject Name: Engineering Mathematics-I

Subject Code: 4TE01EMT1 Branch: B.Tech (All)

Semester: 1 Date: 09/03/2021 Time: 03:00 To 06:00 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

- a) If the power of x and y both areeven then the curve is symmetrical about (a) X-axis (b)Y-axis (c)about both X and Y axes (d)None
- **b)** True/False: the two tangents to the curve $y^2 = x^3$ at the origin are real and distinct.
- c) The infinite series $1 + r + r^2 + \dots + r^{n-1}$ is convergent if (a)|r| < 1 (b)|r| > 1 (c) $|r| \ge 1$ (d)|r| = -1
- d) If $\frac{\partial(u,v)}{\partial(x,y)} \times \frac{\partial(x,y)}{\partial(x,y)}$ is equal to

 (a)1 (b)-1 (c)0 (d) None of these
- e) Condition for f(x, y) to be maximum (a) $f_x = 0 = f_y, rt < s^2, r < 0$) (b) $f_x = 0 = f_y, rt > s^2, r < 0$ (c) $f_x = 0 = f_y, rt > s^2, r > 0$ (d) $f_x = 0 = f_y, rt = s^2, r > 0$
- f) If $u = y^x$, then $\frac{\partial u}{\partial x}$ is $(a)xy^{x-1} \quad (b)0 \qquad (c)y^x \log x \qquad (d)$ None of these
- g) If f(x, y) = 0, then the $\frac{dy}{dx}$ is equal to $(a)\frac{f_x}{f_y}(b)\frac{f_y}{f_x}(c) \frac{f_y}{f_x} \qquad (d) \frac{f_x}{f_y}$
- h) The number of solutions to equation $z^2 + \bar{z} = 0$ is
 (a)1 (b)2 (c)3 (d)4
- i) The polar form of the complex number $\frac{1+i}{1-i}$ is $(a)\cos\frac{\pi}{2} + i\sin\frac{\pi}{2} \quad (b)\sin\frac{\pi}{2} + i\cos\frac{\pi}{2}$ $(c)\cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \quad (d)\sin\frac{\pi}{4} + i\cos\frac{\pi}{4}$

	j)	$x \xrightarrow{\lim_{x \to 0} 0} \frac{\tan x}{x}$ is of the form	01
		$(a)^{\frac{0}{0}} (b)^{\frac{\infty}{\infty}}$ $(c)^{00} (d)^{\infty} - \infty$	
	k)	Which of the following is indeterminate form (a) 0^0 (b) $0 \cdot \infty$ (c) ∞^{∞} (d) All	01
	1)	If $y = x^7$ then $y_7 = $ (a)7! (b)7! x (c)0 (d)8!	01
	m)	If $y = \sin x \cos x$ the y_n equal to $(a)\frac{1}{2}(2)^n \cos(\frac{n\pi}{2} + 2x)$ $(b)\frac{1}{2}(2)^n \sin(\frac{n\pi}{2} + 2x)$	01
		$(c)^{\frac{1}{2}}(2)^n \sin\left(\frac{n\pi}{2} + x\right)$ (d) None of these	
	n)	The value of $(i)^i$ is	01
		(a) $e^{-\frac{\pi}{2}}$ (b) $e^{\frac{\pi}{4}}$ (c) e^{2} (d)None of these	
Attempt	any	four questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
	a.	Evaluate: $x \xrightarrow{\lim} 1\left(\frac{x}{x-1} - \frac{1}{\log x}\right)$	05
	b.	If $y = \cos x \cdot \cos 2x \cdot \cos 3x$ then find y_n .	05
	c.	Expand $e^{\sin x}$ as a series of ascending power of x up to x^4 .	04
Q-3		Attempt all questions	(14)
Q U	a.	Find roots common to the equation $x^4 + 1 = 0$.	05
	b.	Prove that $\cos 6\theta = 32 \cos^6 \theta - 48 \cos^4 \theta + 18 \cos^2 \theta - 1$	05
	c.	Evaluate: $(x, y) \xrightarrow{lim} (0, 1) \frac{x - xy + 3}{x^2y + 5xy - y^3}$	04
Q-4		Attempt all questions	(14)
	a.	If $u = \tan^{-1}\left(\frac{x^2+y^2}{x-y}\right)$ show that $x\left(\frac{\partial u}{\partial x}\right) + y\left(\frac{\partial u}{\partial y}\right) = \frac{1}{2}\sin 2u$.	06
	b.	Expand $f(x) = x^4 - 11x^3 + 43x^2 - 60x + 14$ in power of $(x - 3)$.	05
	c.	Evaluate: $x \xrightarrow{\lim \mathbb{Z}} 0 \frac{\log x^2}{\cot x^2}$	03
Q-5		Attempt all questions	(14)
	a.	If $y = a \cos(\log x) + b \sin(\log x)$, prove that	05
	b.	$x^{2}y_{n+2} + (2n+1)xy_{n+1} + (n^{2}+1)y_{n} = 0.$ Trace the curve $xy^{2} = 4a^{2}(2a - x)$.	05
	c.	Test for convergence $\sum_{n=2}^{\infty} \frac{1}{n \log n}$.	04

Q-6	a.	Attempt all questions Find the extreme value of the $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.	(14) 07
	b.	If $u = \sin^{-1}(x - y)$, where $x = 3t$ and $y = 4t^3$, show that $\frac{du}{dt} = \frac{3}{\sqrt{1 - t^2}}$.	05
	c.	Show that the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{1}{n}\right)$ is convergent.	02
Q-7		Attempt all questions	(14)
	a.	Use Taylor's series to expand $\sin x \cos y$ in a power of $\left(x - \frac{\pi}{3}\right)$ and $\left(y - \frac{\pi}{4}\right)$	05
	b.	Show that $\sum_{n=1}^{\infty} \frac{n}{2^n}$ converses.	05
	c.	Prove that $\cos h^{-1}z = \log(z + \sqrt{z^2 - 1})$.	04

Q-6



